banner

The site's hierarchy



Home page :: Private area :: Site Map :: Credits
Software / 6D-GIM

Navigation

Mar 2009
MTWTFSS
2324252627281
2345678
9101112131415
16171819202122
23242526272829
303112345
News
  • Les premiers zoom de galaxies sont accessibles
  • Le halo FOF 6133 de la boite Horizon L et le halo FOF 544 de Horizon S ont été resimulés avec plusieurs techniques de zoom. Il est important que chaque "zoomer" valide sa méthode, avant de lancer une campagne de zoom sur un plus grand cataloque.
  • Les données de la simulation Mare Nostrum sont disponibles
  • 34 snapshots jusqu’à z=4 sont accessibles sur horizon3 et sur le serveur de fichiers de l’IDRIS à la collaboration Horizon.
  • Méso Machine HPC1 opérationnelle
  • Depuis le 23 Octobre 2005, la Méso machine du site horizon est operationnelle. Elle correspond à 3 quadriprocesseurs avec chacun 64 Giga de RAM reliés par infiniband, ainsi qu’un access conséquent (sur une base de projet dédié) au reste de la ferme). Son acces est ouvert a toute personne de la collaboration ayant acces à la minigrille et qui en fait la demande a admin-minigrille
  • http://
  • Workshop Horizon le 14 et 15 novembre 2005
  • Il aura lieu à Paris les 14 et 15 novembre 2005 (prévoir une nuit sur place). L’enregistrement est ouvert dans la rubrique "meeting!"
  • http://

6D-GIM

6D Galactic Infall Model for dark matter a the virial radius

by Pichon Christophe (Tuesday 15 August 2006)
JPG - 141.5 kb
6D-GIM example maps
Left: velocity orientation distribution color coded as a function of time. Right: distribution of accretion a R200 color coded as a functio of accretion time.

6D-GIM produces samples of universe-flow of dark matter particles at the virial radius. The flow of dark matter particles is a draw from a log normal gaussian random field which satisfy both the mean properties of the infall (temporal decrease, angular isotropy, preferentially radial kinematics infall with an prefered mean velocity) and their correlations (both in time, angle and velocity) as described in the following paper:

PDF - 8.9 Mb

The trick is to generate the positions and crossing time on the one hand, and then for the corresponding hypercube (3 components of the velocity and time) draw velocities at the constraint crossing time. This process insures temporal coherence of the draw both in angle and velocity space.

One needs to specify
- the total number of sought particles
- optionally the parameters characterizing the infall;

The file format is a gadget snapshot with either the two angles and (\cos(\theta),\phi/2/\pi) and time encoded as positions, and velocities (\cos(\psi),\xi/2/\pi,v) or the positions and velocities on the unit sphere and the index as a time tag. (i.e. particle 1 is the first particle to enter the virial radius, particle n is the last particle to enter).


it may return the density maps from which the particles were drawn (for the purpose of gaseous infall or gridbased codes).

- CAVEAT 1 At this stage there is no consistency between the kinematic space and the position space. i.e. virialized infall does not generically obey phase space conservation. This is a serious challenge.

- CAVEAT 2 alt azimuthal periodicity is strictly imposed. This will require a minor fix moving from cartesian GRF to spherical harmonics GRF.