banner

The site's hierarchy



Home page :: Private area :: Site Map :: Credits
Science / Simulations à grandes échelles / Marenostrum Simulations / The huge run / Mare Nostrum @ z=4 / Mare Nostrum @ z=4 Physics

Navigation

Mar 2009
MTWTFSS
2324252627281
2345678
9101112131415
16171819202122
23242526272829
303112345
News
  • Les premiers zoom de galaxies sont accessibles
  • Le halo FOF 6133 de la boite Horizon L et le halo FOF 544 de Horizon S ont été resimulés avec plusieurs techniques de zoom. Il est important que chaque "zoomer" valide sa méthode, avant de lancer une campagne de zoom sur un plus grand cataloque.
  • Les données de la simulation Mare Nostrum sont disponibles
  • 34 snapshots jusqu’à z=4 sont accessibles sur horizon3 et sur le serveur de fichiers de l’IDRIS à la collaboration Horizon.
  • Méso Machine HPC1 opérationnelle
  • Depuis le 23 Octobre 2005, la Méso machine du site horizon est operationnelle. Elle correspond à 3 quadriprocesseurs avec chacun 64 Giga de RAM reliés par infiniband, ainsi qu’un access conséquent (sur une base de projet dédié) au reste de la ferme). Son acces est ouvert a toute personne de la collaboration ayant acces à la minigrille et qui en fait la demande a admin-minigrille
  • http://
  • Workshop Horizon le 14 et 15 novembre 2005
  • Il aura lieu à Paris les 14 et 15 novembre 2005 (prévoir une nuit sur place). L’enregistrement est ouvert dans la rubrique "meeting!"
  • http://

Mare Nostrum at z=4 Physics


by Pichon Christophe (Monday 22 January 2007)

- 12th most massive halo Equation of state at z=4 in code units for the temperature

JPG - 186.5 kb
Equation of state of halo at z=4
neightbourhood of high res halo.

- Global Equation of state at z=4

JPG - 83.4 kb
Equation of state of gas at z=4
includes all cells in the simulations
JPG - 180 kb
EoS skeleton at z=4
minimal smothing. One probes the filaments of the voids as well.

JPG - 148.4 kb
EoS skeleton at z=4
intermediaire smoothing

JPG - 134.2 kb
EoS skeleton at z=4
larger smoothing. Only the major filaments are probed

- Friend of Friend at z=4

JPG - 1.9 Mb
Friend of Friend of MN at z=4
All structures with more than 1000 particles are shown. The FOF linking length is 0.2

The catalogs

Zip - 524.8 kb
Friend of Friend catalog
The linking length was set to 0.2. WARNING the simulation was analysed as 8 segmented regions and the overlapping was not accounted for. Hence some halos at the boundary may have been cut or dropped.
texte - 32.2 kb
The first 500 halos of MN at z=4
The linking length was set to 0.2. WARNING the simulation was analysed as 8 segmented regions and the overlapping was not accounted for. Hence some halos at the boundary may have been cut or dropped.

- Mass function of Dark Halos (using the above catalog)

JPG - 36.6 kb
FOF mass function
note the above caveat for halo identification

- Correlation function (using the cube below)

JPG - 104.7 kb
MN correlation function at z=4
It was computed on a 512^3 grid. This is the correlation function of the contrast of the field.

- Power spectrum (using the cube below)

JPG - 98.1 kb
MN powerspectrum at z=4
It was computed on a 512^3 grid. This is the power spectrum of the contrast of the field.

- Skeleton of gas at z=4

JPG - 4 Mb
skeleton of MN gas at z=4
The different coloured curves correspond to smoothing length of 0.6, 0.9 1.2 and 1.5 Mpc/h. Note the tree structure of the skeleton as a ffunction of smoothing length. Note the similiraty with the DM skeleton

- Skeleton of Dark Matter at z=4

JPG - 4.1 Mb
Skeleton of MN Dark Matter at z=4
The different coloured curves correspond to smoothing length of 0.6, 0.9 1.2 and 1.5 Mpc/h. Note the tree structure of the skeleton as a ffunction of smoothing length. Note the similiraty with the gas skeleton
JPG - 538.5 kb
skeleton slice DM with varring smoothing at z=4
The skeleton is built for each sum of wavelet cubes. Hence the tree like structure of the skeleton.
JPG - 5.3 Mb
multiscale skeleton slice at z=4
same as previously for a different slice at higher resolution.

It can also be viewed interactively as a 3D java applet at the following
- 3D-skeleton-low-res (at low resolution) and
- 3D-skeleton-hi-res (at higher resolution).

- Skeleton of stars at z=4

JPG - 2 Mb
star skeleton at z=4
note that the smoothing scales are twice those of

- Skeleton of -Div V of gaz at z=4

JPG - 1.7 Mb
Skeleton slice of div V at z=4
superposed on density slice.

- Comparison of all skeletons at z=4

JPG - 1.2 Mb
Comparison of all skeleton atz=4
in red DM, in dark blue Gaz and light blue stars
JPG - 583.7 kb
comparison div V vz gaz at z=4
Note the close similarity between the two skeletons

- Distance PDF between gas and DM filaments in units of smoothing.

The physical size of gas filaments appears here at R< 800 kpc. (ie the disance is not scale invariant anymore)

JPG - 132.1 kb
PDF normalised distance Gas-DM at z=4
for the dark matter the beheaviour is not scale invariant: at about 800 kpc the filaments of DM and Gas differ

JPG - 75.2 kb
Evolution of mode gas-DM distance vz smoothing at z=4
note the change in beheaviour at z=4

JPG - 134 kb
PDF normalised distance Gas-Temperature at z=4
contrary to the dark matter the beheaviour remains scale invariant

- Stars at z=4

JPG - 7.1 Mb
MN stars at z=4
Note that dead stars (debris are also included)

- Stars age formation at z=4

JPG - 7.1 Mb
age of star formation at z=4
The colour coding corresponds to -log conformal age of formation for one star out of 200.

- Star metallicity slice at z=4

JPG - 500 kb
metallicity slice at z=4
The slice corresponds to 10 % of the cube. The colour coding is log10(10-3+z)

- Stars age metallicity relation at z=4

JPG - 176.5 kb
age metalicity relation of stars
The redshift z=4

- Mass function of stars atz=4

JPG - 194.1 kb
Star Mass function at z=4
Some random noise was multiplied to the mass in order to carry the PDF.

- Metal PDF of stars atz=4

JPG - 201.6 kb
Metal PDF of stars at z=4

- Age PDF of stars atz=4

JPG - 187.2 kb
Age PDF of stars at z=4
in code units (conformal time)

- Slices of Dark Matter at z=4

JPG - 2.4 Mb
Slices of MN dark matter at z=4
the resolution is 512x512x512. Each section is taken every 20 pixels in z.

- Correlation function of stars and biased gaz at z=4
- 

JPG - 274.6 kb
correlation function of stars atz=4
in blue the gaz with contrast larger than 100. in red the gas, in black the stars. Note the bias for the stars.

Slices of gas at z=4

JPG - 6.6 Mb
Slices of MN gas at z=4
The resolution is 512x512x512. Each section is taken every 20 pixels in z.

- Slices of gas velocity in z at z=4

JPG - 2.7 Mb
Slices of MN gas velocity at z=4
The same sampling strategy was applied as previously.

- Mass function of galaxies at z=4

The galaxies are identified via a FOF on the stars

JPG - 193.9 kb
PDF of galaxies at z=4
note that its not weighted by the different masses of stars

- Spectra of galaxies

- FOF of galaxies

JPG - 1.9 Mb
FOF of galaxies at z=4

- Metallcity age Mass r relations of galaxies at z=4

JPG - 1 Mb
Age mass metalicity of galaxies at z=4
a FOF cut of 100 was applied on star selection to construct the galaxies. The metalicity and the age are mass weighted

JPG - 514.4 kb
galaxy mass metal at z=4

JPG - 703.4 kb
galaxies age metal atz=4

- Catalog

texte - 1.8 Mb
Catalog of galaxies
index position number of stars mass age metalicty

- Stellar spectra of galaxies at z=4

JPG - 753.8 kb
SSP spectra within a given galaxy.
The spectra of the SSP entering a given galaxy of MN at z=4 Here the age and metalicity are not calibrated properly.
JPG - 665.5 kb
The first few spectra of galaxies at z=4
The spectra are built according to the distribution of stars as SSP in age metalicity and weighted according to their mass. CAVEAT here the age and metalicity are not calibrated properly.

- metal vz metal of galaxies at z=4

JPG - 214.4 kb
gaz Z vz star Z at z=4
The metalicity of stars (mass weighted) vz the metallicity of gas (density weighted) for the first 2000 galaxies containing more than 30 stars. Note that the density/metallicity is measured from the 512^3 cube.
JPG - 130.7 kb
colour colour diagram MN atz=4
Using steidel’s colours in order to identify dropouts