banner

The site's hierarchy



Home page :: Private area :: Site Map :: Credits
Science / Simulations à grandes échelles / Marenostrum Simulations / The huge run / Mare Nostrum @ z=4 / Mare Nostrum @ z=4 stellar

Navigation

Mar 2009
MTWTFSS
2324252627281
2345678
9101112131415
16171819202122
23242526272829
303112345
News
  • Les premiers zoom de galaxies sont accessibles
  • Le halo FOF 6133 de la boite Horizon L et le halo FOF 544 de Horizon S ont été resimulés avec plusieurs techniques de zoom. Il est important que chaque "zoomer" valide sa méthode, avant de lancer une campagne de zoom sur un plus grand cataloque.
  • Les données de la simulation Mare Nostrum sont disponibles
  • 34 snapshots jusqu’à z=4 sont accessibles sur horizon3 et sur le serveur de fichiers de l’IDRIS à la collaboration Horizon.
  • Méso Machine HPC1 opérationnelle
  • Depuis le 23 Octobre 2005, la Méso machine du site horizon est operationnelle. Elle correspond à 3 quadriprocesseurs avec chacun 64 Giga de RAM reliés par infiniband, ainsi qu’un access conséquent (sur une base de projet dédié) au reste de la ferme). Son acces est ouvert a toute personne de la collaboration ayant acces à la minigrille et qui en fait la demande a admin-minigrille
  • http://
  • Workshop Horizon le 14 et 15 novembre 2005
  • Il aura lieu à Paris les 14 et 15 novembre 2005 (prévoir une nuit sur place). L’enregistrement est ouvert dans la rubrique "meeting!"
  • http://

Mare Nostrum at z=4 stellar


by Pichon Christophe (Saturday 10 March 2007)

Structure identification on MN 34

JPG - 869 kb
galaxies identification

JPG - 884.9 kb
galaxies identification

In colour the gas density, in green the stars, in yellow the leaves of DM + core of mother with Dylan’s post treatment.

JPG - 246.1 kb
Metal distribution at z=4

JPG - 247.9 kb
Metal distribution at z=4 cont

In grey the metal density, in green the stars, in yellow the leaves of DM + core of mother with Dylan’s post treatment.

GZ - 1.4 Mb
gzip’d cat of gals at z=4
sorted in mass

The corresponding dark matter adaphop structures are available on the FTP server of the HORIZON collaboration: HORIZON-FTP

3 files are found there
- MN-34-adaphop.nod : all clumps in adaphop format
- MN-34-leaves-with-stars.nod : all galaxy clumps
- MN-34-star.nod : clumps in the star catalog

The second catalog corresponds to a post treatment of the first, following the prescription described in Sort Nodes, and a selection based the fact that each clump contains at least one star. It is our GALAXY reference catalog.

CAVEATS: the dark matter adaphop catalog and its sequels was produced by segments of 1/8th of the simulation. A reordering and overlapping recovery of the full catalog in in progress. It was shown for the FOF catalog that the difference in treatment was minimal (0.2 %).


The corresponding spectra (73k Galaxies) produced with PEGASE2 are available on the FTP server of the HORIZON collaboration: HORIZON-FTP

5 files are found there
- MN-34-gal-spectra.dat (500 megas)
- MN-34-gal-spectra.txt
- MN-34-gal-spectra-wavelength.txt

- MN-34-gal-color.dat
- MN-34-gal-color.txt

the first is in totor format (see below) it contains

x y z [box fraction] m [solarM] age [Myr] log10 z [mass fraction] flux [Erg/s/solar M/cm^2 ]

the second is the beginning of the first in ascii as a check

the third is the corresponding wavelength in Angstrom.

the forth is the table of colours in various filters relevant for high redshift objects

x y z [box fraction] m [solarM] age [Myr] log10 z [mass fraction] observed Magnitude in G R I z K IRAC-3.6 IRAC-8.0

The last is the first 80 lines of the fourth as a check

The following Fortran example shows how to read such files:

As a check we produced the following color diagrams from the above spectra:

JPG - 266.8 kb
color color diagram of galaxies at z=4
Only half of the box is processed. This figure can be reproduced qualitatively from the catalogs given on the ftp server

JPG - 169.1 kb
color magnitude of MN at z=4

Quantitativement, la Distribution ci dessous semble en bon accord avec les donnees publiees par Bowens et al. 2006 pour des galaxies à z 6

JPG - 93.1 kb
Luminosity function of MN at z=4
to be compared to the published distribution to the right

JPG - 72.1 kb
Luminosity function of real galaxies


One and two points statistics

Once the colours have been computed, it is possible to look at one and two points statistics with the catalogs.

In particular,

JPG - 168.5 kb
1 pt stat of MN at z=4 vz color
using a subset (1/3) of the full catalog

JPG - 185.8 kb
Two pts stats of MN at z=4 vz color


Halo Occupation Number

JPG - 85.4 kb

JPG - 43.7 kb
Halo occupation number
in MN at z=4

These are computed using the daughters of the adaphop catalogs given above.


Inner structure

For the galaxies above we compute the local maps within a sphere centered on the center of mass of the stars (not the gas) and compute the moment of inertia with respect to the brightest pixel. The Cumulative PDF of ellipticity (the square root of the ratio of the eigenvalues of the inertia tensor weighted by exp(-r/rmax)) is also shown there. An example of ellipsoid fit is also shown

JPG - 363.3 kb
core of gal at z=4
The inner structure of galaxies within the adaphop radii. These X-Y maps correspond to the maximum pixel along the LOS. a dot shows the position of the projection of the densest pixel w.r.t. which the moment of inertia is computed.

JPG - 94.7 kb
CPDF of flattening at z=4
Computed from all galaxies within 6 hires cubes near the first few most massive halos.

JPG - 231.4 kb
Ellipsoid fit to the density
Example of fit of a uniform ellipsoid in order to model the dust.


Properties of galaxies

JPG - 107.2 kb
Mass function of galaxies
Number of galaxies per unit mega parsec in bins of solar mass

JPG - 209.7 kb
Observed Z stellar mass correlation
The red curve is an extrapolation of z=3 data.

JPG - 156.8 kb
Mass of metal vz Mass of gas
of MN at z=4. Within ellipsoid containing 85 % of young stars. Color coded in eccentricity (= sqrt(l1/l3) )

JPG - 268.5 kb
Eccentricity of gal vz Mass of gas
colour coded in log Mass of metal. The eccentricity is defined as = sqrt(l1/l3)

JPG - 231.7 kb
Metals in Gas vz Stellar Mass at z=4
The metal gas is computed within the ellipse; the stellar mass is computed within the adaphop sphere.

JPG - 291.4 kb
eccentricity vz size of gal at z=4
The size and ellipticity are measured as the long axis and sqrt(l3/l1)


catalogs of star/gas/DM

GZ - 3.1 Mb
gzip’d cat of star/DM/gas mass
num_adaptahop,x,y,z,r,mdm,mgas,mstar,mFe

Note that here Yann chose 3 Adaphop radii to make the measurements

JPG - 571.5 kb
Mass of DM/*/gas at z=4
courtesy of Yann see corresponding cat.

JPG - 328.9 kb
Yann’s & Chris’s Mstar vz Mgas
The discrepency arises because of a different choice in outer radius.

Cosmic SFH,Color, metals, density, SFR confrontation with data

JPG - 35.2 kb
Cosmic SFR at z=4
computed by Yann

JPG - 197.1 kb
Observed Z stellar mass correlation
From the reduction of Yann.

JPG - 200.3 kb
Colour Mag at z=4
Red points are measured. It seems that MN gals are too faint in Red.

JPG - 130.8 kb
Number density at z=4
as a function of redshift and threshold in mass

JPG - 123.4 kb
Stellar mass density at z=4
computed from all SSP belongings to galaxies. Somewhat high.

JPG - 115.6 kb
Luminosity function in UV rest
compared to Steidel. Not enough galaxies at low SFR in MN at z=4.

Satellite accretion efficiency

Here we compute the fraction of the surface of the (rescaled) adaphop mother radius which is covered by satellites.

JPG - 92.1 kb
Filling factor at z=4
Filling factor of satellites at z=4 as a function of fraction of mother radius.


Star Formation rate

JPG - 371.6 kb
cosmic specific SFR at z=4

JPG - 194.2 kb
cosmic SFR at z=4

JPG - 81.6 kb
cosmic SFR vz age

JPG - 71.8 kb
linear cosmic SFR vz age

Genus (Euler Characteristic)

JPG - 203.6 kb
Genus of MN at z=4
The genus of the gas and the DM is shown here.

TODOs:

- Two point correlation in redshift-real space for stars as a function of luminosity.
- Section of filaments gas/DM;
- Spectra and slices with metals species.
- Accretion flow maps;
- Redshift evolution;
- Mass profiles;
- phase space morphology segmentation and NN classification
- Redshift distorsion
- Pk multiscale
- feeding factor.