banner

The site's hierarchy



Home page :: Private area :: Site Map :: Credits
Science / Conditions Initiales / Conditions Initiales Idéalisées / Initial conditions for isolated galaxies / From distribution functions

Navigation

Mar 2009
MTWTFSS
2324252627281
2345678
9101112131415
16171819202122
23242526272829
303112345
News
  • Les premiers zoom de galaxies sont accessibles
  • Le halo FOF 6133 de la boite Horizon L et le halo FOF 544 de Horizon S ont été resimulés avec plusieurs techniques de zoom. Il est important que chaque "zoomer" valide sa méthode, avant de lancer une campagne de zoom sur un plus grand cataloque.
  • Les données de la simulation Mare Nostrum sont disponibles
  • 34 snapshots jusqu’à z=4 sont accessibles sur horizon3 et sur le serveur de fichiers de l’IDRIS à la collaboration Horizon.
  • Méso Machine HPC1 opérationnelle
  • Depuis le 23 Octobre 2005, la Méso machine du site horizon est operationnelle. Elle correspond à 3 quadriprocesseurs avec chacun 64 Giga de RAM reliés par infiniband, ainsi qu’un access conséquent (sur une base de projet dédié) au reste de la ferme). Son acces est ouvert a toute personne de la collaboration ayant acces à la minigrille et qui en fait la demande a admin-minigrille
  • http://
  • Workshop Horizon le 14 et 15 novembre 2005
  • Il aura lieu à Paris les 14 et 15 novembre 2005 (prévoir une nuit sur place). L’enregistrement est ouvert dans la rubrique "meeting!"
  • http://

From distribution functions


by Emsellem Eric (Tuesday 15 November 2005)

The most direct way to generate velocities for a set of N particles is to use the distribution function, which in principle provides the relative probability of a star to have a certain position and velocity.

There is a simple rejection method which can then be used to obtain a sampling consistent with the original distribution function. This method, known as the von Neumann rejection method, has been described so often, that here, we only provide a quick description of its principle using a simple illustration. Let’s imagine we wish to sample a positive distribution which depends on one variable v (i.e. velocity) described by P(v). The process is then : 0- First, define the range of allowed v’s (vmin - vmax). and then derive the maximum Pmax value for P(v) in this range.
 1 For one particle, select a velocity v_i so that vmin <= v_i <= vmax.
 2 For that particle, select P_i such that 0 <= P_i <= Pmax
 3 the rejection technique then tells you to reject that draw if P_i > P(v_i), but accept otherwise.
 4 if it is accepted, proceed with the next particle, and otherwise go back to step 1 for that particle. This guarantees that the obtained sampled set of particles follows the functional form P(v) you originally choose.

The von Neumann rejection method is efficient only if P(v) is as close to Pmax as possible for all v’s (constant function). If this is not the case (e.g. strong peak at one v value, but very low otherwise), the number of rejection points will be high and the technique very inneficient. It is therefore advised to allow some change of variable as to uniformize the $P(v) function before the rejection technique is applied.

A description of this technique is available in the Numerical Recipes (Press et al. 1993), and has been used by many to generate a set of N particles consistently with some a priori distribution functions. One of the best know examples is the Plummer sphere as mentioned by Aarseth, Henon, Wielen 1974 (A&A 37, 183), and has been applied for axisymmetric multicomponents systems by e.g. Kuijken & Dubinski 1994 (MNRAS 2777, 1341).