M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
23 | 24 | 25 | 26 | 27 | 28 | 1 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 | 1 | 2 | 3 | 4 | 5 |
A workshop dedicated to the Theoretical Virtual Observatory will take place at IAP on April 5-6th.
The goal is to bring together experts of the Virtual Observatory and theoreticians who would like to make results of their simulations (e.g. databases or catalogs) or numerical codes available to the worldwild astronomical community.
mosaic of 4x4 50 h^-1Mpc simulations (JPG file, 713.6 kb, 1368 x 1368 pixels) Credit C. Pichon, D. Aubert. Each simulation involves 256^3 dark matter particles at z=0. These simulations are produced to study the statistical properties of substructures within dark matter haloes
|
|
25 h^-1 Mpc slice of dark matter (JPG file, 438.6 kb, 1680 x 1680 pixels) credits D. Aubert, C. Pichon
This high resolution simulation (512^3 particles) is carried as a reference for the purpose of convergence studies. |
|
50 h^-1 Mpc slice of dark matter (JPG file, 430.8 kb, 1368 x 1368 pixels) credits D. Aubert, C. Pichon This high resolution simulation (512^3 particles) is here represented at redshift 0.5
|
mosaic of 19x19 50 h^-1Mpc simulations (JPG file, 439.4 kb, 1024 x 1024 pixels) Credit C. Pichon, D. Aubert Each simulation involves 128^3 dark matter particles at z=0. Such sets of simulations are carried to study statistically the properties of dark matter haloes on galactic scales
|
peack patch of large scale structure (JPG file, 83.4 kb, 964 x 836 pixels) (c) C. Pichon
The flow of trajectories towards their local maxima which define patches of region which will undergo gravitationnal collapse.
|
Stars in 10 Mpc box (TIFF file, 16 Mb, 4097 x 4097 pixels) Star mass projected along one axis and color-coded according to star age (Yann Rasera)
|
Gas in 10 Mpc box (TIFF file, 16 Mb, 4096 x 4096 pixels) Gas mass projected along one axis color coded according to gas density (Yann Rasera)
|
A galaxy major merger. (JPG file, 66.8 kb, 1423 x 1423 pixels) Credit Cattaneo, Combes, Colomibi, Bertin, Melchior 2005, Epoch 1, face-on
|
détection du squelette. (JPG file, 684.8 kb, 1280 x 1024 pixels) Détection des filaments dans une simulation de matière noire de 50 Mpc.
Crédit: Thierry sousbie, CRAL lyon
|
|
Big initial conditions (JPG file, 1.4 Mb, 2736 x 2736 pixels) This is a slice of a 2048^3 density cube at high redshift, generated by mpgrafic. Credit: C. Pichon, IAP S. Prunet, IAP D. Aubert, CEA |
Double-ringed galaxy (JPG file, 81 kb, 1365 x 1024 pixels) The galaxy ESO474-G26 (left) and a numerical model of tis formation in a major merger of two spiral galaxies (right). Red and green correspond to the stellar populations of the two progenitor galaxies. Credit : F.Bournaud, F.combes, V.Reshetnikov, LERMA, Paris
|
The polar ring galaxy NGC4650A (JPG file, 119.7 kb, 1289 x 1024 pixels) The polar ring (left) is formed via tidal accretion of material from the gas-rich spiral (right, now isolated). The model (bottom) matches the relative velocities of the actual system (top, DSS image) and predicts and age of 400 Myr. Credit F. Bournaud, LERMA, Paris.
|
Compared evolution of a galactic disk in Newtonian and MONDian gravity (JPG file, 1.1 Mb, 2792 x 1320 pixels) Credit Olivier Tiret, LERMA, Paris.
|
Embedded galactic bars (JPG file, 344.2 kb, 1020 x 1560 pixels) Stars and gas in a gas rich galaxy. A decoupled nuclear bar is seen inside the ILR of the main bar.
Credit: F. Bournaud, LERMA
|
Formation of a massive Tidal Dwarf Galaxy (JPG file, 176.3 kb, 1200 x 993 pixels) This simulation of a merging pair of galaxies, whith several levels of zoom, shows the formation of small clumps and a more massive object at the tip of the tidal tail. This object progressively grows and becomes a massive (>10^9 Mo) tidal dwarf galaxy with its own internal spiral strucutre.
Credit F. Bournaud, LERMA, Paris
|
Hierarchical gas dynamics (JPG file, 2.4 Mb, 2048 x 2048 pixels) Two galaxies in the cosmological context: Zooming sequence showing dark matter density, gas density, gas temperature and, star age and distribution. Simulation: 5123 coarse cells/ 5 refinement levels/ box length 10 Mpc / z=3 Credits Y. Rasera, R. Teyssier |
The skeleton of the SDSS (JPG file, 234.4 kb, 966 x 772 pixels) Credits: T. Sousbie,
H. Courtois, C. Pichon, S. Colombi &
the SDSS collaboration
|
500 h-1 Mpc oblique slice (JPG file, 4.5 Mb, 4096 x 4096 pixels) 1024^3 dark matter particles (c) C Pichon. R Teyssier 2007
|
|
50 h-1 Mpc Dark Matter (JPG file, 939.8 kb, 1300 x 1300 pixels) 1024^3 AMR simulation
(c) Sousbie Pichon Teyssier 2007
|
50 h-2 Mpc temperature (JPG file, 3.8 Mb, 2048 x 2048 pixels) oblique slice at z=2.4
(c) Pichon. Sousbie Teyssier 2007
|
Dark Matter 100^2 h-1 Mpc x 10 Mpc (JPG file, 1 Mb, 1025 x 1025 pixels) slice at z=0
(c) Pichon. Teyssier 2007
|
Dark Matter 500^2 h-1 Mpc x 50 Mpc (JPG file, 1.2 Mb, 1025 x 1025 pixels) slice at z=0
(c) Pichon. Teyssier 2007
|
50 h-2 Mpc gas density (JPG file, 3.3 Mb, 2048 x 2048 pixels) oblique slice at z=2.4
(c) Pichon. Sousbie Teyssier 2007
|
50 h-1 gas z=2.5 (JPG file, 3 Mb, 2048 x 2048 pixels) 1024^3 initial grid; 4 levels of refinements
(c) 2007 Pichon Teyssier
|
50 h-1 temperature z=2.4 (JPG file, 4 Mb, 2048 x 2048 pixels) 1024^3 initial grid; 4 levels of refinements
(c) 2007 Pichon Teyssier
|
|
50h-1Mpc temperature z=1.9 (JPG file, 3.4 Mb, 2048 x 2048 pixels) projection of full box.
(c) C. Pichon R. Teyssier.
|
50h-1Mpc gas z=1.9 (JPG file, 3.3 Mb, 2048 x 2048 pixels) projection of full box.
(c) C. Pichon R. Teyssier.
|
Horizon 4Pi 4096^3 z=1. (PNG file, 4.5 Mb, 4096 x 2560 pixels) This is a thin slice through a full sky cone.
|
The global skeleton (JPG file, 1.1 Mb, 961 x 986 pixels) superposed onto the dark matter distribution (one particle in a thousant) . (c) Sousbie, Pichon Colombi.
|
Mare Nostrum galaxies at z=2.4 (JPG file, 1.6 Mb, 2048 x 2048 pixels) Composite image of galaxies in true coiour
|