Outline

- A. First star formation
- B. First star feedback
- C. Large-scale reionization
- D. Open questions/simulations

Dark matter vs. gas

- Dark matter clumps on all scales
- Gas resists clumping
 below Jeans length

 (when thermal pressure
 balances gravity)

 $- M_J =$ ~ 10⁴ M_{sun}

 $M_{cloud} > M_{J}$ necessary

ightarrow

Dark matter vs. gas

- Dark matter clumps on all scales
- Gas resists clumping
 below Jeans length

 (when thermal pressure balances gravity)

 $-M_{J} =$

 $\sim 10^4 \mathrm{M_{sun}}$

- M_{cloud} > M_J necessary but not sufficient
- Cloud must also <u>cool</u>:

 H_{2}

Cooling: Why H₂?

- No "heavy" molecules (e.g. CO)
- Cloud collapses (virializes): $T \sim T_{vir} \sim M^{2/3}(1+z)$
 - Set by initial conditions and dark matter
 - If T_{vir} $< 10^4$ K: No H line cooling, only H₂
 - If $T_{vir} > 10^4$ K: H line cooling dominates
- H₂ formed in gas phase (no dust)
 - catalyzed by free electrons, strongly T dependent

Cooling: Why H₂?

- Cooling efficiency depends on:
 - amount of H₂
 - T emperature (cooling rate \sim T⁴)
- Minimum H₂ fraction for efficient cooling

 - $f(H_2) \sim 10^{-3}$ $T_{vir} \sim 1000 \text{ K}$

$$t_{cool} = t_{age}$$

First Stars: Two mass scales

(1) Overall mass of the "microgalaxy" (M_{cloud})

- $M_{cloud} \sim 10^6 M_{sun}$ (minimum cooling scale)
 - z~20
- Analytic approaches:
 - Tegmark et al. (1997)
 - Abel et al. (1998)
- Numerical simulation:
 - 1D: Haiman et al. (1996), Omukai & Nishi (1998)
 - 3D: Abel et al. (1998)
 Fuller & Couchman (2000)

M_{cloud}: Analytic approach

- Guess $M_{cloud} (M_{vir} \& z_{vir})$
- Assume spherical symmetry

 Use "top-hat" solution: ρ(z)
- Calculate $n_{H_2}(z)$, T(z)
 - Solve rate equations for H_2
 - Solve heating/cooling rates

- Stop when $T(z=z_{cool})$ falls below $0.75T(z_{vir})$
- For given cosmology: find M_{vir} with smallest z_{cool}

First Stars: Two mass scales

(2) Stellar Mass (M*) or IMF

- More difficult
 - substructure, fragmentation, H₂, multi-scale
- $M_* < 10^6 M_{sun}$
- Analytically predicted M_{*}: M_{planet} 10⁶ M
- Requires full numerical simulation
 - 1D: Haiman et. al (1996)
 - 2D: Nakamura & Umemura (2000)
 - 3D: Abel et. al (1998), Bromm et. al (1999), Abel et. al (2001), Bromm et. al (2003)

The first stars are different

	first generation	present-day
	of stars	star formation
Coolant	H ₂ (gas-phase)	CO, etc.
Equation of state	"adiabatic"	isothermal
	(slow cooling)	(fast cooling)
Typical temperature	500 K	10 K
Initial conditions	well-prescribed	Uncertain
Magnetic fields	(probably) absent	dynamically important

Simulating the first stars

- Primordial star formation easier...
 - No heavy elements, ionizing radiation, magnetic fields
 - Primary coolant: H₂
 - $T < 9000 \text{ K} \rightarrow \text{H}$ line cooling unimportant
- ...but still hard:
 - H₂ abundance out of equilibrium
 - Resolution required: $L/r_{sun} \sim 10^{23} \text{cm} / 10^{11} \text{cm} \sim 10^{12}$
 - Fragmentation? (M_{star} << M_{cloud})

The equations

1. Fluid equations

$$\begin{split} \left(\frac{\partial\rho}{\partial t}\right)_{r} + \vec{v}\cdot\nabla_{r}\rho &= -\rho\nabla_{r}\cdot\vec{v},\\ \left(\frac{\partial\vec{v}}{\partial t}\right)_{r} + (\vec{v}\cdot\nabla_{r})\vec{v} &= -\frac{1}{\rho}\nabla_{r}p - \nabla_{r}\phi,\\ \left(\frac{\partial E}{\partial t}\right)_{r} + \vec{v}\cdot\nabla_{r}E &= -\frac{1}{\rho}\nabla_{r}\cdot(p\vec{v}) - \vec{v}\cdot\nabla_{r}\phi,\\ E &= e + \frac{1}{2}\vec{v}\cdot\vec{v},\\ e &= p/[(\gamma-1)\rho], \end{split}$$

- 2. Ideal Gas
- 3. Gravity $\nabla_r^2 \phi = 4\pi G(\rho_{total} + 3p_{total}/c^2) \Lambda.$
- 4. Dark matter $\rho_{total} = \rho_{gas} + \rho_{particles}$
- 5. nine species: $H, H^+, He, He^+, He^{++}, e^-, H^-, H^+, H_2$
- 6. Radiative cooling/heating

The simulation: focus on one (2.5σ) halo

- L = 128 kpc, SCDM, $z_{init} = 100$
- 4 levels of AMR pre-refined:
 - $-M_{DM} = 1 M_{sun} M_{gas} = 0.07 M_{sun}$
- Refine up to 30 levels
- DM, gas, gravity
 - Non-equilibrium chemistry for 9 species
 - Cooling/heating from H₂, Compton, etc
- Refinement criteria:
 - (1) dm density, (2) gas density (3) $\Delta x < L_J/16$

Evolution of the Cloud

12 comoving kpc on a side, projection of 0.001 of the simulation volume

Primordial molecular cloud evolution

First star formation

Microgalaxy structure

Density slice (z=18.2)

Temperature slice (z=18.2)

What are the masses of the first stars?

- Calculation stopped when core is optically thick to H₂ line cooling
 - Protostar is final state of this calculation
- What can we say about final stellar mass?
 - M $_{*}$ depends on accretion and radiative transfer
 - 1D Radiative transfer calculations imply that
 - M* limited by accretion
 - Omukai & Nishi (1998), Ripamonti et al. (2001)
- No fragmentation so far

What are the masses of the first stars?

What is the "Initial Mass Function" of the first stars?

- What about other objects in cloud?
 - Can they form before 1^{st} goes SN?
 - No: only one object per cloud

- Only 1 clump in cloud after a few Myr
- 1 Supernova can unbind cloud
- Only one (massive) star produced per microgalaxy!

Have pop III stars been found locally?

- Extremely low metallicity stars have been found
 - [Fe/H] = -5.2 (HE0107-5240; Chriestleb et al 2002)
 - [Fe/H] = -5.4 (HE1327-2326; Frebel et al. 2005)
 - Both are low mass stars
- Is this star:
 - Pop III with accretion (binary?)
 - Pop II with a small amount of pre-enrichment
 - (e.g. Iwamoto et al 2005)
- Both stars have relatively high C abundance
 - Cooling comes mostly from CII

B. Feedback from the first stars

- 1. H_2 Photo-dissociating flux (11-13 eV)
 - Suppresses new "first" star formation
- 2. Ionizing radiation from the first stars:
 - Positive? (more stars, leading to runaway)
 - Ionization → free e- → more H₂ → more cooling (Haiman, Rees & Loeb 1996)
 - Negative? (fewer stars, self-suppression)
 - Ionization \rightarrow heating \rightarrow outflows \rightarrow lower density gas
- 3. Impact of the first supernovae
 - Metals: "regular" star formation mode ($[Z_{crit}] = -3.5$)
 - Produces smaller stars (like sun)
 - Due to more efficient cooling (particularly Carbon)
 - Energy

2. The impact of ionization on the first stars

Log density at z=17.5

No ionizing flux

With ionizing flux $(F_{21} = 10 \text{ for } 3 \text{ Myr at } z=25)$

Impact of Reionization

Why is there no fragmentation?

- Fragmentation criteria:
 - $|-t_{cool} < t_{dyn}$ $(t_{dyn} \sim n^{-1/2})$
- At low densities, H_2 is mostly in ground state
 - t_{cool} ~ n⁻¹
- At high densities $(n > 10^4 \text{ cm}^{-3})$
 - Excited states populated
 - t_{cool} is constant

 $\begin{array}{l} \mbox{Imprints mass scale} \\ \mbox{of} \sim 200 \ M_{solar} \\ \mbox{(Jeans mass at $n \sim 10^4$ cm^{-3}$} \\ \mbox{ and $T \sim 300$ K)} \end{array}$

Why is there no fragmentation?

• Thermally unstable?

$$\rho \frac{dL}{d\rho} \bigg|_{T} - T \frac{dL}{dT} \bigg|_{\rho} + L(\rho, T) > 0$$

(Hunter 1970)

- If cooling rate per unit mass is: $L = A\rho T^{\alpha}$
- unstable if $\alpha < 2$

Primordial star formation

with $Z = 10^{-3}$ solar

with no metals

Metal cooling reduces the resulting masses

C. Large-scale reionization

- Current state-of-the art:
 - Freeze hydro, do "radiative transfer"
 - "I-front" tracking
- Radiative transfer hard
 - Ray tracing
 - moment-method
- Reionization difficult because of source clustering
 - L(bubble) \sim 10+ Mpc

Reionization by the First stars?

Greg Bryan - First Stars

Sokasian et al (2003)

WMAP τ value was larger than expected

- Pre-WMAP predictions around τ~0.08
- Difficult to get τ=0.17 with standard IMF
- One way to get earlier reionization is with

 a top-heavy IMF as
 produced by the first
 stars

Reionization by the First stars?

Greg Bryan - First Stars

Sokasian et al (2003)

D. Open questions

- Impact of ionizing bubbles on later star formation
 - Increase entropy in "fossil HII regions"
 - Increase e- and hence H_2 and cooling
 - HD enhancement (lower mass stars?)
- First SN: Metal mixing
 - When does "first" star mode end?
- First SN: impact of blast waves
 - Fragmention? (HD)
- Star formation in Type II halos ($T > 10^4 \text{ K}$)
 - HI line cooling (fragmentation?)
 - Escape fraction?
 - Number of stars/halo?
- Reionization
 - How does it occur? How does it impact star formation?

D. Simulations

- Type II (10⁸ solar mass, $T \sim 10^4$ K) halo
 - Refined region: $L \sim 1$ Mpc with M_{sun} resolution
 - All physics
 - H2 photodissociating flux
 - Small-scale Ionizing "bubbles"
 - Metal ejection and mixing
 - blastwaves
- Reionization
 - L = 50-100 Mpc (minimum) for biasing
 - Study 21 cm tomography